Droplet breakup in an asymmetric microfluidic T junction.

نویسندگان

  • Ahmad Bedram
  • Ali Moosavi
چکیده

Breakup of non-uniform droplets in an asymmetric T junction consisting of an inlet channel and two different-size outlet channels has been investigated numerically. Also, an analytical approach in the limit of the lubrication approximation has been extended to provide some analytical relations to study the system and verify the numerical results. Parameters that are important in the performance of the system have been determined and discussed. Our results indicate that smaller droplets can be produced by increasing the capillary number. As the geometry becomes symmetric the pressure drop decreases. Our results also reveal that the breakup time and the pressure drop for this system are smaller than the previous suggested method for producing non-uniform droplets, i.e., a uniform size T junction with different-length outlet channels.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Breakup of drops in a microfluidic T junction

We propose a mechanism of droplet breakup in a symmetric microfluidic T junction driven by pressure decrement in a narrow gap between the droplet and the channel wall. This mechanism works in a two-dimensional setting where the capillary Rayleigh–Plateau instability of a cylindrical liquid thread, suggested earlier D. Link, S. Anna, D. Weitz, and H. Stone, Phys. Rev. Lett. 92, 054503 2004 as th...

متن کامل

Modeling of droplet breakup in a microfluidic T-shaped junction with a phase-field model.

A phase-field method is applied to the modeling of flow and breakup of droplets in a T-shaped junction in the hydrodynamic regime where capillary and viscous stresses dominate over inertial forces, which is characteristic of microfluidic devices. The transport equations are solved numerically in the three-dimensional geometry, and the dependence of the droplet breakup on the flow rates, surface...

متن کامل

Designed pneumatic valve actuators for controlled droplet breakup and generation.

The dynamic breakup of emulsion droplets was demonstrated in double-layered microfluidic devices equipped with designed pneumatic actuators. Uniform emulsion droplets, produced by shearing at a T-junction, were broken into smaller droplets when they passed downstream through constrictions formed by a pneumatically actuated valve in the upper control layer. The valve-assisted droplet breakup was...

متن کامل

Lattice Boltzmann Simulation of Deformation and Breakup of a Droplet under Gravity Force Using Interparticle Potential Model

Abstract In this paper interparticle potential model of the lattice Boltzmann method (LBM) is used to simulate deformation and breakup of a falling droplet under gravity force. First this model is applied to ensure that the surface tension effect is properly implemented in this model. Two tests have been considered. First, it has been checked an initial square drop in a 2D domain can freely def...

متن کامل

Monodispersed microfluidic droplet generation by shear focusing microfluidic device

A microfluidic device designed to generate monodispersed picoliter to femtoliter sized droplet emulsions at controlled rates is presented. This PDMS microfabricated device utilizes the geometry of the channel junctions in addition to the flow rates to control the droplet sizes. An expanding nozzle is used to control the breakup location of the droplet generation process. The droplet breakup occ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The European physical journal. E, Soft matter

دوره 34 8  شماره 

صفحات  -

تاریخ انتشار 2011